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Abstract. We discuss the phase structure of homogeneous quark matter under the charge neutrality
constraints, and present a unified picture of the thermal unpairing phase transitions for a wide range
of the quark density. We supplement our discussions by developing the Ginzburg-Landau analysis.
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Surprisingly rich phases of quark matter under high pressure are being revealed
by extensive efforts [1, 2, 3, 4, 5, 6]. The key ingredients which are important at
moderate density can be divided into two categories; (i) the dynamical effects and (ii) the
kinematical effects. The dynamical effects include strong coupling effects [7, 8, 9, 10],
an interplay between the pairing and chiral dynamics [3, 4, 5, 6] and so on. In this
talk, we focus on the competition of the pairing with the chiral dynamics and the
kinematical effects such as (1) the strange quark mass and (2) the charge neutrality
constraints under the β -equilibrium. The kinematical effects will make a stress on the
pairing and bring about the exotic phase called “gapless” superconductivity at moderate
density [1, 2]; the gapless CFL (gCFL) [2] is one of such examples. The neutrality
constraints are also known to lead to an interesting complication in the phase diagram
even at finite temperature: For instance, the Ginzburg-Landau analysis [11] shows that
the down-quark pairing phase (dSC phase) consisting of only the u-d and d-s pairings
may become the second coldest phase at high density. However, this conclusion seems
to be model-dependent. In fact, the NJL analyses which incorporate the chiral dynamics
[5, 6] show that the second densest phase is the up-quark pairing (uSC) phase consisting
of only the u-d and u-s pairing. In this talk, we report our recent work [4] which gives
a systematic and unified picture of the thermal unpairing transitions under the charge
neutrality constraints for a wide range of the quark density.
We start with the Lagrangian densityL = q̄(i /∂ − m̂0+ μ̂γ0)q+Lint withLint being

the following 4-fermion coupling [3]

Lint =GD∑3η=1
[
(q̄Ptη q̄)(

tqP̄ηq)
]
+GS∑8α=0

[
(q̄λFαq)2+(q̄iγ5λFαq)2

]
. (1)

The first term simulates the attractive interaction in the color (flavor) anti-triplet and
JP = 0+ channel in QCD, i.e., (Pη)abi j = iγ5Cεηabεηi j. See [4], for the other details of
notation. We take the chiral SU(2) limit m̂0 = diag.{0,0,ms} with ms = 80MeV fixed.
μ̂ in the Lagrangian contains the charge chemical potentials (μe,μ3,μ8) which couple
to the electric and two diagonal color charge densities as

μ̂abi j = μ−μeQi j +μ3T
ab
3 +μ8T

ab
8 + (off-diagonal part), (2)
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FIGURE 1. Phase diagram calculated with the extremely weak (qq) coupling (a) and that with weak
coupling (b). In (a), there is a small region for the realization of gCFL phase at T = 0 (bold red line).
(c) shows Tcη evaluated by the Ginzburg-Landau analysis with the parameter set GD/GS

∼= 0.42 and
μ = 500MeV.When the coupling strength is increased, (M2

s /μ)DCP, the intersection of Tc2 and Tc1 moves
to higher value, while the ratio of Tc0−Tc3 : Tc0−TDCP = 1 : 7 would not be affected.

where we have defined Q, T3 and T8 as usual [4]. It can be shown that the chemical
potentials for off-diagonal color densities are unnecessary for the standard diagonal
ansatz for the diquark condensate, i.e., 〈qai qbj〉 ∼ (Pη)abi j with η = 1,2,3 [4]. We de-
termine the phases in (μ,T )-plane by calculating the effective potential through the
mean field approximation with the condensate fields, Δη = Gd

8 〈tqPηq〉, and M̂− m̂0 =
− Gs
2Nc
diag.(〈ūu〉,〈d̄d〉,〈s̄s〉). We perform the calculation with several values of GD/GS

with GS set so as to reproduce the dynamical quark mass M = 400MeV in the chiral
limit at μ = T = 0 for a cutoff Λ = 800MeV; we have GSΛ2 = 2.17. Fig. 1(a) and (b)
show the phase diagram for GD/GS ∼= 0.42 (the extremely weak coupling case) and that
for GD/GS ∼= 0.63 (the weak coupling case). The χSB denotes the chiral-symmetry bro-
ken phase and the UQM is an abbreviation of the “unpaired quark matter”. For other
phases, see [4]. Each of the superconducting phases, CFL, 2SC and uSC, has its gapless
version, gCFL, g2SC, and guSC, where some quasi-quarks become gapless in the pres-
ence of the finite background charge chemical potentials. As the value of the diquark
coupling is increased, these “premature” gapless phases tend to disappear, and the fully
gapped phases dominate the phase diagram. In fact, we can see that the gCFL phase at
T = 0 in Fig. 1(a) is taken over by the UQM phase in (b), which can be interpreted as a
consequence of the competition between the dynamical and kinematical effects [4].
The reason why the uSC shows up in the phase diagram instead of the dSC can be

nicely understood by the Ginzburg-Landau (GL) analysis. We can expand the effective
potential in terms of the gap parameters near the critical temperature Tc0 which denotes
the CFL→ UQM transition temperature in the symmetric matter with ms = 0:

LGL = 4N[μ]
{− fi(Ms)Δ2i + 1

2gi j(Ms)Δ2i Δ
2
j + · · ·}, (3)

where N[μ] = μ2/2π2 is the density of state. It is important that under the neutrality
constraints, the GL coefficients become functions ofMs, which may be expanded as

fi(Ms,T ) = a0i+a2iM
2
s +a4iM

4
s + · · · , gi j(Ms,T ) = β0i j +β2i jM

2
s + · · · . (4)

We can calculate all the coefficients using the Feynman diagrams. The ultraviolet diver-
gence appears only in a0i as a consequence of the singularity in the diquark propagator



at T = Tc0 for Ms = 0. We can regularize it by subtracting the equation expressing the
Thouless condition which serves as the mass counter term that guarantees the second
order transition at T = Tc0. We can show a0i = −t (i= 1,2,3) with t being the reduced
temperature T−Tc0

Tc0
, and β0i j = δi j

7ζ (3)
16π2T 2c0

. a2i was derived in [11], and a4i, (β2i j) was ob-

tained1 in [4]. As we show below, a2i (a4i,β2i j) causes a split of the order of M2
s (M

4
s )

in the melting temperature; Tc0 → (Tc1,Tc2,Tc3) where Δη vanishes at Tcη . When T is
increased, the first CFL-to-non-CFL transition with Δη1 → 0 takes place at T = Tcη1 .
We can determine Tcη1 by solving Tcη1 =min.{T1,T2,T3} with Tη defined by the root of
Δ2η(Tη) = 0 where Δ2η(T ) = g−1η j f j(Ms,T ) is the solution of ∂LGL

∂�Δ

∣∣∣
T

=�0. We have

Tη
Tc0

= 1+a2ηM2
s +

(
a4η + 7ζ (3)

16π2T 2c0
∑ j β

−1
2η j(a2η −a2 j)

)
M4
s + · · · , (5)

by which Tcη1 as a function of Ms can be determined. To find the next melting order
parameter Δη2, we put Δη1 = 0 into Eq. (3) and repeat the same procedure in two
order parameter space. Finally, we obtain the order of hierarchical melting transitions
(Tcη1 < Tcη2 < Tcη3). We confirmed that Δ3 survives at highest temperature so that η3= 3
irrespective of the value of Ms. In contrast, which of Δ1 and Δ2 first vanishes with
increasing T depends on Ms; in fact, we have found the doubly critical strange quark
massMDCP

s above (below) which the uSC (dSC) is realized as the second coldest phase.
In Fig. 1(c), we have given the phase diagram in the (M2

s /μ,T )-plane, obtained by the
GL analysis for GD/GS ∼= 0.42 and μ = 500MeV.
In conclusion, we have made an extensive analysis of the phase diagram of the quark

matter and given a unified view on the thermal unpairing transitions. By extending the
earlier work [11] with the higher order effects of the strange quark mass on the pairing
taken into account, we have shown how the window for the dSC-realizaion in the high
density regime tends to close towards lower density. It should also be stressed that an
analytic expression for the doubly critical point [12] can be derived in our framework.
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1 One has to take care that there is a feedback to β2i j from the Fermi gas part of thermodynamic potential.


